3차원 큐비트 신호제어/해독 소자의 단면 및 특성.[KAIST 제공] |
[헤럴드경제=구본혁 기자] 한국연구재단은 카이스트(KAIST) 김상현 교수팀이 기존 CMOS 기반 로직 소자의 한계를 극복할 3차원 로직 소자와 극저온에서 동작하는 초저전력 반도체 소자 및 회로기술을 개발했다고 밝혔다.
이번 연구성과는 차세대 반도체인 저전력 CMOS 로직회로와 극저온에서 작동하는 대형 양자컴퓨터의 핵심 소자로 사용 가능할 전망이다.
로직 반도체 소자는 소자 소형화 공정 기술 개발을 통해 집적도와 성능을 높여왔지만, 물리적인 한계로 더 이상 소형화 실현이 어려운 상황이다. 또한 소자 소형화에 따른 배선의 선폭 감소와 이로 인한 배선의 저항, 전력 소모 증가로 성능 향상에 이중고를 겪고 있다.
이 같은 한계를 극복할 차세대 반도체 기술로 모놀리식 3차원 집적기술(M3D)이 주목 받고 있다. 기존의 적층기술과 달리 단일 회로를 3차원으로 적층하여 집적도를 높이면서도 소자를 연결하는 배선 저항을 획기적으로 줄일 수 있고, 상부 채널에 고성능 신규 소재를 도입할 수 있기 때문이다. 하지만 적층 및 상부 소자 공정에서 열을 계속 가하게 되어 낮은 층의 소자가 쉽게 손상되기 때문에 공정이 매우 까다로운 한계가 있다.
초전도체 혹은 실리콘(Si) 양자점을 사용하는 양자컴퓨터는 기존 컴퓨터와 달리 극저온에서 동작하며 수만 개의 회로로 연결돼 있다. 따라서 양자컴퓨터에 사용되는 저잡음 증폭기 소자는 극저온 작동하면서 열 발생이 최대한 적어야 하므로 초저전력 소자로 구현되어야 한다.
연구팀은 모놀리식 3차원 집적 기술을 통해 고성능 게르마늄/실리콘(Ge/Si) 하이브리드 CFET와 더불어 극저온에 동작하면서 집적도가 높고 초저전력으로 동작하는 반도체 소자 및 회로를 개발했다.
연구팀은 적층공정 및 소자 제작 시 필요한 높은 공정온도를 억제하는 독자적인 저온공정을 개발해 기존 모놀리식 3차원 집적기술의 한계를 극복했다.
김상현 카이스트 교수.[KAIST 제공] |
또한 대형 양자컴퓨터가 필요로 하는 수만 개의 큐비트를 적은 수의 소자 및 배선으로 제어, 판독하기 위해서 극저온에서 동작하는 저저항, 초저전력 저잡음 증폭 소자 및 라우팅 소자를 구현했다.
연구팀이 구현한 반도체 소자 및 공정 기술은 앞으로 양자컴퓨터용 소자 개발에 광범위하게 활용되고 기존의 로직소자 등에서 기술적 성능을 크게 향상하는데 활용될 것으로 기대된다.
김상현 교수는 “이번 연구성과는 기존 반도체의 기술적 한계를 극복하여 성능을 극대화한 차세대 반도체 기술을 개발한데 의의가 있다”라며 “미래 과학기술 변화를 주도할 차세대 로직 및 양자컴퓨터의 핵심 소자로 광범위하게 사용될 수 있도록 후속 연구에 힘쓰겠다”고 밝혔다.
과학기술정보통신부와 한국연구재단 지원으로 수행된 이번 연구결과는 ‘국제전자소자학회(International Electron Device Meetings, IEDM)’에 2편의 논문으로 발표됐다.
nbgkoo@heraldcorp.com